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The Geometry of Lattice Planes.  I 
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A simple but powerful method is outlined for finding the arrangement of lattice points in a lattice 
plane of given Miller indices, and for determining the stacking properties of such planes. The theory 
is extended to cover the case of motif points within the primitive unit cell. 

In troduc t ion  

In  this paper we take up the formal mathematical  
problem of finding the arrangement of lattice points 
in a lattice plane of given Miller indices (hkl). The 
problem does not admit  of a general algebraic solution 
in terms of h, k and l, but  it  is possible to lay down a 
simple procedure for determining a pair of primitive 
translation vectors for the plane in any given case. 
~rhen one of the indices is unity,  e.g. (hkl), a solution 
may  be found in terms of the other two (here h and k). 
The arrangement of lattice points is the same for all 
lattice planes of given (hkl), but  the vector joining 
any lattice point to the nearest lattice point in the 
next plane of the series has in general a component 
parallel to the plane. This component, referred to here- 
after as the shift vector, determines all the stacking 
properties of the series. The problem of determining 
the shift vector admits of a solution subject to the 
same limitations as tha t  of the preceding problem. 
The analysis is readily extended to cover the case of 
motif points within the unit  cell. A search through the 
crystallographic li terature has failed to reveal any 
previous general a t tack on these problems, though a 
number of particular cases have been treated by in- 
tuitive methods not requiring formal algebraic proce- 
dures. We hope t ha t  our techniques will prove of use 
to a fairly wide class of reader and therefore, in the 
interests of generality and conciseness, we omit all 
consideration of possible applications. These include 
the analysis of habit  planes occurring in martensite 
transformations, a novel crystallographic t reatment  of 
atomic movements in deformation twinning and the 
determination of the structure of edge dislocations in 
cry~t~l~, ~nd will be t~ken up in two p&pers forth. 
coming. 

A r r a n g e m e n t  of la t t ice  po in t s  in  a la t t ice  p lane  

Let three vectors a, b, c, of lengths a, b, c respectively, 
constitute a set of primitive translation vectors for a 
lattice. Any triplet of integers u, v, w then defines a 
lattice point, or vector ua+v b+wc ,  the triplet u, v, w 
being referred to as the co-ordinates of the point. 
The plane of Miller indices (hld) passing through the 
origin has the equation 

hu+kv+lw  = O, 

so tha t  it  certainly passes through the lattice points 

0 , 0 , 0 ;  / ,0,  h; 0 , / , i t ;  and k,h,  0 .  

In  the present discussion i t  is assumed tha t  h, k, 1 are 
all relatively prime, the more general case introducing 
only minor complications which can be treated by  an 
extension of the present methods. I t  will be appre- 
ciated tha t  the vectors 

a' = l a - h c ,  b' = l b - k c  

illustrated in Fig. 1 do not necessarily constitute a 
pair of primitive translation vectors for the plane 
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F ig .  1. I l l u s t r a t i o n  of v e c t o r s  a"  ---- / a - - h c ,  b '  ---- / b - - k c  l y i n g  
in t h e  p l a n e  of ind ices  (hkl). 

a '  ----- ] / a - - h c [ ,  b '  : ] / b - - k c ] ,  cos  0 = a ' - b ' / a ' b ' .  

hu+lcv+lw---O, and that ,  indeed, the question of 
their status constitutes the kernel of the problem. To 
investigate this point we set up a new system of axes 
defined by a' ,  b ' ,  and a vector c'  perpendicular to the 
plane and of arbi trary length, so tha t  any vector 
u a + v b + w c  is relabelled into the form u 'a '+v 'b '+ 
w'c', where the new co-ordinates u', v', w" are not 
necess&rily integers. It is convenient to write 

c' = p a + q b + r c ,  

where p, q, r are sufficiently defined by  

c' • a '  = c' • b '  = 0 

(and are not necessarily integers). Now, substituting 
for a' ,  b' ,  c' in the equation 

u a + v b + w c  = u'a' +v'b '  +w'c '  , 

we obtain at once the co-ordinate transformation 
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v = 0 1 q v' . (1) 
w ~ b r w' 

We are par t i cu la r ly  interested in  applying (1) to a 
lat t ice point  %, v 0, w o in  the  plane 

h u + k v + l w  = 0 

(i.e. a lat t ice point  for which necessarily w ' =  0), 
in which case 

u o = l u ' ;  v o = l v ' ;  w o = f l u ' + z v ' ,  
i.e. 

u'  = (1/1)%; v' = (1/1)vo; w'  = 0; 1 4 0 .  (2) 

If  u o - - N i l ,  v o - -Ngl ,  where N 1, N~ are integers, 
V ~ then  u' ,  are integers defining latt ice points  at  the 

corners of paral lelograms,  each of side a ' ,  b ' ,  as illus- 
t ra ted  in Fig. 1. 

Inter ior  points  are effectively defined by  

1 ~ u  0 ~ l - 1 ,  1 ~ v  o ~ l - 1 ,  (3) 

there being l - 1  such points  in each parallelogram, as 
proved below and  as i l lus t ra ted in Fig. 2 for the plane 

.05~ _55,11 

I / A l l /  
V/ / /¢ /  /A//// 

"000 . -  -So~ 

Fig. 2. Map of plane (295) in the primitive cubic lattice. 

a ' =  [/29, b ' =  ]/106, cos 0 = 18/(~/29x 106). 

(295) in the  pr imi t ive  cubic lat t ice;  when 1 - 1 there 
are no interior points,  thus  proving tha t  a', b" con- 
s t i tu te  a pair  of p r imi t ive  vectors for the plane (hkl). 
Since h, /c have  the  same s ta tus  as l, i t  follows, by  
in t roducing k, I2, 0 in (1) in place of either l, 0, ]~ or 
0, l,/~, t ha t  a pair  of pr imi t ive  vectors m a y  also be 
obta ined when h - - 1 ,  k = 1 respectively;  either of 
these a l ternat ive  t ransformat ions  m a y  be used if 
1 = 0. The procedure for f inding interior latt ice points 
is in general  as follows: set u = 1 and f ind a solution 
of h + k v + l w  = 0 (this being always possible by  vir tue 
of Eucl id ' s  a lgori thm, bearing in mind  tha t  h, k, 1 are 
all  re la t ively  pr ime);  if v, w is one such solution, then  
any  other solution mus t  necessarily have the form 
v+n l ,  w - n k ,  where n is any  integer;  by  a suitable 
choice of n we m a y  thus  sat isfy 1 ~ v 0 ~ l - l ,  and 
hence (since u = 1 satisfies 1 _< u 0 _ l -  1) determine an 
interior point  1, v o, w o of the  parallelogram. To prove 
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tha t  there are l :  1 interior  points, i t  suffices to r emark  
tha t  we can set u = 2, 3 , . . . ,  1 - 1  and  repeat  the 
procedure. 

The shift vector 

To invest igate  the  shift  vector, we note in  the  first 
place tha t  all planes paral lel  to h u + k v + l w  = 0 have  
the equat ion h u + k v  + lw  = C, where C is necessari ly 
an integer. B y  assigning any  integral  value to w and  
noting that ,  by  Eucl id 's  algori thm, integers u and  v 
m a y  be found so tha t  h u + k v  = 1 - 1 w ,  i t  follows t ha t  
C = 1 is possible and  tha t  i t  defines the  nearest  paral lel  
plane to the original p lane (i.e. C = 0); s imi lar ly  all  
other integral  values are allowed for C. On working 
out the inverse of the  t ransformat ion  (1), apply ing  it  
to the latt ice point  uc, vc, wc in the  plane hu + kv + lw = C, 
and collecting terms we obtain 

u' 1 pC 1 qC 
= ~ ( u c  " ~ ( V C - h p + k  q hp+- -~+l r )  ' v' = z-lr)  ' 

C 
w '  = - -  - -  ( 4 )  

where hp + kq + lr ' 

(i) r bc'aln cnn n b nnn  
= ]  c(no, n ~ - n r )  (ca/b) (1-n~)  a(n~nr-n~)  i ' 

(b(nrnc,-n~)  a(n~n~,-n¢,) (ab/c) (1 - n.~)J 

(5) 
on wri t ing 

b - c  c . a  a - b  
n~ = bc ' n~ - , n r -  ca ab 

Sett ing C = 0 gives the  relat ions (2) previously 
deduced directly. 

t V t I t  m a y  be noted t ha t  u ,  in (4) depend only on 
the ratio p:q:r ,  in contrast  to w' ;  distances along the  
z' direction are given by  

C 
w'c' = • I p a + q b ÷ r c ]  (6) 

hp + kq + lr 

which again depends only on p : q ' r .  Sett ing C = 1 in 
(6) gives the in terp lanar  spacing. Sett ing C = 1 in (4) 
gives the u' ,  v', w' of a latt ice point  ul, vl, w 1 in the  
plane h u + k v + l w  = 1, of which the project ion on the  

t V t plane C = 0 is u' ,  v', 0; the join of u ,  to the most  
convenient  neighbouring latt ice point  of C = 0 then  
defines the shift  vector t. I n  the  general case it  is 
necessary to obta in  ul,  v 1, w x by  inspection, bu t  if 
1 = 1 we see tha t  an immedia te  solution is ul, vl, w I = 
0, 0, 1 so tha t  

u '  --P , v ' =  ...... f-q- . . . . ,  (7) 
h p +  kq + r h p +  kq + r 

similar  considerations apply  if h = 1 or k = 1. 
The symbol  o in Fig. 3, of co-ordinates 

108 101 225 
110 ' 110 ' 110 
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marks the projection of a lattice_point in the (295) 
plane G = 1, i.e. the point 1, 1, 2. If this projection 

os§ s,s,~-~ 

/ / o  / • / 

Y / 
"ooo -sog 

Fig. 3. Stacking of (295) planes in the primitive cubic lattice. 
The symbols o, @ mark respectively the projection of 
lattice points lying in the two successive planes to the plane 
mapped, the heights of the points being d29s, 2d29s respec- 
tively. 

is regarded as being obtained from the origin by a 
shift along the broken line, as indicated, then the shift 
vector is given by 

lies lOl 2251 lies lOl  251 
] ] O '  110 '  1 - ~ J - [ 0 ,  0, 0] = D 1 0 '  110'  1-~J"  

A shift of double the amount  leads to the point 
denoted by  the symbol @, which marks the projec- 
tion of a lattice point in C = 2; evidently the l l 0 t h  
projection obtained in this way will coincide with a 
lattice point of C = 0, thus showing tha t  the stacking 
pa t te rn  of the primitive cubic (295) planes constitutes 
a congruence modulo 110. To prove tha t  the stacking 
pat tern  of the primitive cubic (hkl) planes constitutes 
~ congruence modulo h~+k~+F , we note: 

(i) tha t  the normal, through the origin, to the plane 
hu+kv+lw  = 0, passes through h, 2, l; 

(ii) tha t  there exist no lattice points between 0, 0, 0 
and h, k, l along the direction of the normal; 

(iii) tha t  h, k, l lies on the plane h u + k v + l w  = 
h2+k~+/2; 

(iv) and tha t  there exists a series of equally spaced 
planes, defined by C = 1, 2, . . .  between C = 0 and 
C = h~+k~+l 2. 

Motif  po in t s  

We now introduce a motif point B at  a translation 
vector xa + y b  +zc from each lattice point (referred to 
hereafter as an A-point), thus defining a second lat- 
t.ice (the B-lattice) interpenetrating the original (the 
A-lattice). This means tha t  there exists a motif point B 
(B-point) within any primitive cell defined by A- 
points, and, in particular, at the position x, y, z 
within the cell defined by the primitive triplet  a, b, c. 
In  relation to the series of parallel lattice planes 

h u + k v + l w  = C (the A-planes), there are two distinct 
possibilities for a B-point, namely:  

(1) I t  lies on an A-plane, this being the ease if 
h x + k y + l z  = C' is an integer; for if u, v, w are the 
co-ordinates of an A-point in the plane C, then u+x ,  
v+y,  w + z  are the co-ordinates of a B-point in the 
plane C+C' - -wh ich  is an A-plane since C+C'  is an 
integer. The array of A- and B-points in the plane 
does not constitute a two-dimensional lattice, for there 
exists a motif point B within any primitive parallelo- 
gram defined by A-points. To find this two-dimensional 
motif, i t  suffices to determine the position of any 
B-point in the plane C = 0. 

(2) I t  does not lie on an A-plane, this being the case 
if hx+ky+lz  = C' is not an integer. In  this case i t  is 
convenient to write C' = C+6,  where C is an integer 
and where [6[ < ½, and to associate the B-plane G + 6  
with the A-plane C, thus obtaining a series of parallel 
B-planes . . .  6, 1 + 6, 2 + 6 . . .  of indices (hkl), asso- 
ciated respectively with the A-planes . . . 0 ,  1, 2, . . . .  
I t  will be appreciated tha t  we must  now consider the 
shift vector t_4~ relating C to C + 6  in addition to the 
original shift vector t (now preferably re-written taa,  
or, since the shift between successive B-planes is the 
same as between successive A-planes, tab ). The vec- 
tor tab may  be formally defined as the component, 
parallel to the plane (h/c/), of the vector joining an 
A-point in the plane C to the nearest B-point in the 
plane C+6.  This vector may  be found as follows: the 
B-point x, y, z lies on the B-plane C + 6 = h x + k y + l z ,  so 
tha t  its projection x', y', 0 on C = 0 is given by 

x' 1 { x_P(hx+ky+l z )~  
-- 7 j ,  

u' 1 q(hx+ u+zz)i 
- 

since C, 6 are known, we thus determine 

x'a' + y ' b ' - C t B B  (8) 

as the projection on C = 0 of a B-point in the plane 
6: the joint of this projection to the nearest A-point 
in C = 0 then defines taB. When 6 = 0 the present 
case reduces to the preceding, and (8) gives the posi- 
tion of a B-point lying in C = 0. 

If a lattice is described by a non-primitive unit  cell 
(sometimes referred to ~s a structure cell), e,g, the 
b. c. c. lattice, i t  may  be regarded as consisting of two 
interpenetrating lattices (i.e. an A-lattice and a B- 
lattice) for which the motif point B occupies a special 
position. As before there are two possibilities for a 
B-point, namely:  

(1) I t  lies on an A-plane, in which case the ar ray 
of A- and B-points in the plane constitutes a two- 
dimensional lattice. 

(2) I t  does not lie on an A-plane, in which case 
necessarily 



M'. A. f fASWON AND D. B. DOVE 91 

= ½  and t a B = ½ t a a = ½ t z B .  

The theory can be extended in an obvious manner to 
the case of several motif points within the primitive 
unit cell. 

We are indebted to Dr :N. F. M. Henry  and to the 
referee for helpful suggestions in improving the presen- 
tation. One of us (D.B.D.) acknowledges a Universi ty 
Grant from the Wfltshire County Council. 
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The Crystal Structure of 1,4-Dithiane* 
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(Received 2 August 1954) 

T h e  c ry s t a l  s t r u c t u r e  of 1 ,4 -d i th iane  ha s  b e e n  d e t e r m i n e d  a n d  r e f i n e d  b y  l e a s t - squa re s  m e t h o d s ,  
u s i n g  c o m p l e t e  t h r e e - d i m e n s i o n a l  d i f f r a c t i o n  d a t a  f r o m  c o p p e r  X - r a d i a t i o n .  T h e  c o m p o u n d  is 
isomorphous with 1,4-diselenane, and hence the molecule has the centro-symmetric chair con- 
figuration, as reported by Dothie. The bond distances and standard deviations are: S-C1, 1.8014- 
0-013 A; S-C~, 1-8214-0-011 /~; C1-C e, 1-4904-0.018 A. 

Introduction 

In  an electron-diffraction investigation of 1,4-dithiane, 
C4HaS~, Hassel & Viervoll (1947) reported sulfur- 
carbon distances of approximately 1.81 ~,  which is 
the sum of the accepted single-bond radii of carbon 
and sulfur (Pauling, 1948), but were unable to dif- 
ferentiate between two different models for the mole- 
cule. An X-ray diffraction investigation of 1,4- 
diselenane (Marsh & McCullough, 1951) showed tha t  
this molecule has the expected chair form; however, 
the average Se-C distance proved to be 2-01 A - -  
significantly greater than  the sum of the single-bond 
radii of selenium and carbon (1.94 /~). The present 
X-ray diffraction investigation of crystals of 1,4- 
dithiane was undertaken to provide a check on the 
S-C distances, as well as to ascertain the molecular 
configuration. Recently, Dothie (1953) has reported 
unit-cell dimensions and space-group symmetry  for 
1,4-dithiane which require tha t  the molecule be in the 
centro-symmetric chair configuration. 

Experimenta l  

A sample of 1,4-dithiane was recrystalfized by slow 
subLimation in a sealed ampoule. The resulting mono- 
clinic crystals, which were elongated in the b direction, 
were sealed in thin-wall glass capillaries to prevent 
evaporation during X-ray photography. Two crystals 
were photographed; one was oriented with its b axis 
parallel to the axis of the capillary and had dimensions 
of about 0.5 × 1.5 x0.2 mm., while the other had its 
c axis approximately parallel to the axis of the 

* Contr ibut ion  1~o. 1926 f rom The Gates and  Crellin Labo- 
ratories of Chemistry.  

capillary and had dimensions of about 0"3 ×0.t.<0-2 
ram. Multiple-film Weissenberg photographs were 
prepared with unfiltered copper X-radiation for the 
equator and first four layer lines about the b axis, 
and for the equator and first six layer fines about the 
c axis; by this means, all of the reflections within the 
sphere of copper radiation were recorded. Out of the 
total  of 618 reflections within the sphere, 548 were 
strong enough to be observed. Intensities were esti- 
mated visually by comparison with a calibrated strip, 
and a film factor of 3-8 sec" was used to correlate 
intensities of successive photographs, /x being the 
equi-inclination angle. :No correction was made for 
absorption. 

The space-group symmetry,  as determined from the 
Weissenberg photographs, is tha t  of C~h-P21/n. Ap- 
proximate unit-cell dimensions and intensity com- 
parisons showed tha t  the compound is isomorphous 
with 1,4-diselenane (Marsh & McCullough, 1951); 
there are thus two centro-symmetric molecules in the 
unit  cell, in agreement with the findings of Dothie 
(1953). Accurate values for the lattice parameters 

Table 1. Lattice parameters 
1,4-Dithiane 

- 

This invest igat ion Dothie  1,4-Diselenane 
(1) (2) (3) 

a 6.7634-0.002 A 6.74 A 6.974-0.02 A 
b 5.4644-0.005 A 5.46 A 5.62-a0.02 A 
c 7.8444-0.003 A 7.69 A 8-014-0-02 
fl 92.67 4-0.04 ° 91"53 ° 93.6 4-0"1 ¢ 
c' 10.12 4-0-008 A 10.09 A 
fl' 129.25 4-0.07 ° 130.37 ° - -  

().---- 1-5418 for Cu Ka, 1.54050 for Cu Kct 1, 
1.54434 for Cu Kc%) 


